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Abstract

This work deals with the modelling of permeable fronts and the building of a numerical method allowing the multi-

dimensional propagation of such fronts. A particular attention is given to evaporation waves that appear in cavitating

systems. These ones are considered as discontinuities through which a non-equilibrium liquid turns to a liquid–vapor

mixture at thermodynamic equilibrium. Such transformation occurs at finite rate. In order to determine this kinetics,

the evaporation front is assumed to propagate at the maximum admissible speed corresponding to the Chapman–Joug-

uet deflagration point [J.R., Simões-Moreira, J.E., Shepherd, Evaporation waves in superheated dodecane, J. Fluid

Mech. 382 (1999) 63–86]. Using this particular kinetic relation, Rankine–Hugoniot relations are closed at such fronts.

Then it is possible to solve the associated reactive Riemann problem. However, another difficulty is present to solve the

multi-dimensional propagation of permeable fronts. This kind of front is subsonic and a conventional averaging scheme

(such as Godunov scheme) is inappropriate. To overcome this difficulty, the reactive Riemann problem solution is

embedded into the discrete equations method (DEM) [R., Abgrall, R., Saurel, Discrete equations for physical and

numerical compressible multiphase mixtures, J. Comp. Phys. 186 (2003) 361–396; R., Saurel, S., Gavrilyuk, F., Renaud,

A multiphase model with internal degrees of freedom: application to Shock–Bubble Interaction, J. Fluid. Mech., 495

(2003) 283–321]. This numerical method necessitates deep extensions that are detailed herein. Numerical results are

shown and validated over experimental data. Some examples show that the same method may be applied to the prop-

agation of detonation fronts.
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1. Introduction

When a liquid initially in thermodynamic equilibrium undergoes strong rarefaction waves, it may reach a

metastable state where the temperature is higher than the saturated one at the final pressure of the ex-

panded state. Then the superheated liquid releases its metastable energy (stored as internal energy) very
quickly, even explosively, producing either pure vapor or liquid–vapor mixture at thermodynamic equilib-

rium, flowing at high velocity. This phenomenon is often called cavitation. Such situations appear fre-

quently in nature and in many industrial applications, as liquid flows around hypervelocity projectiles,

airfoils, or inside nozzles such as fuel injector systems. Cavitation in these systems always produces strong

disturbances. In most applications, cavitation appears as a multi-dimensional process due to geometrical

effects. This multi-dimensional character complicates both experiments and theories. By using one-dimen-

sional expansion tubes, many authors [15,21,28,36] and particularly [32] succeeded in isolating the main

phenomenon we propose to summarize hereafter. These experiments consisted in connecting a vertical tube
filled with a liquid in thermodynamic equilibrium at atmospheric pressure (or higher) to a very low-pressure

chamber (Fig. 1).

As soon as the membrane between the liquid and the vacuum chamber is ruptured, rarefaction waves

propagate through the liquid producing a superheated liquid (Fig. 2).

Then a subsonic phase transition front propagates through the superheated liquid producing a high

velocity liquid–vapor mixture in thermodynamic equilibrium towards the low-pressure chamber. The front

velocity is approximately 1 m/s while the ejected mixture velocity is of the order of 100 m/s.

These experimental observations indicate that both liquid and vapor compressibilities must be consid-
ered. Another observation was provided by Reinke and Yadigaroglu [28] about the front structure. The

front appears as a highly disturbed cellular discontinuity as shown in Fig. 3.

Then, if the front structure has to be computed, the appropriate model must solve the front instabilities.

Typical cellular scales are of the order of 1 mm–1 lm which is very small compared to industrial systems
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Fig. 2. Liquid thermodynamic process associated to the expansion wave producing a superheated liquid.



Fig. 3. Photographs from [28] showing the structure of an evaporation front.
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dimensions. In addition, even if the one-dimensional structure is only considered, the heat boundary layers

on both sides of the front are also very small (1 lm). In this way, several works have been achieved where

the front is solved theoretically [1,22,34,38] or numerically [14,20]. For the applications under consideration

(hypervelocity underwater projectiles, liquid flows in nozzles), the only reasonable approach is to consider
the front as a discontinuity without solving its internal structure. This approach is adopted in the present

paper. Obviously, it poses other difficulties that are summarized hereafter:

– the thermodynamic closure and associated equations of state,

– the front kinetic relation,

– the building of a reactive Riemann solver,

– the numerical treatment of the multi-dimensional front propagation.

The first difficulty deals with the thermodynamic closure. Since the front is considered as a discontinuity

separating the liquid phase and a pure vapor when evaporation is total, or a liquid–vapor mixture when

evaporation is partial, appropriate EOS on both sides of the front are needed to close the conservation

laws. The last ones are either the Euler equations for a single phase or the homogeneous Euler equations

for a liquid–vapor mixture at thermodynamic equilibrium. In the first case, pure liquid and vapor EOS are

needed. In the second case, a mixture EOS must be used. Pure vapor and liquid EOS are strongly coupled.

Indeed, at thermodynamic equilibrium, combination of both EOS in conjunction with pressure, tempera-

ture and chemical potential equilibrium must reproduce the phase diagram as detailed in [23]. This combi-
nation also results in a mixture EOS corresponding to the well-known saturated vapor pressure P = Psat(T)

characteristic of the liquid–vapor couple. This is the topic of Section 2.

The second and third difficulties are linked and are related to the modelling of liquid–vapor phase tran-

sition. In the experiments described below, an acoustic wave (expansion wave) is preceding the evaporation

front, itself preceding a compression wave and a contact discontinuity as represented in Fig. 1. The corre-

sponding waves pattern is shown in the (x,t) diagram in Fig. 4.

Such a configuration is known in the literature as the reactive Riemann problem. This one has been

solved by [9,18,35] for detonation and deflagration problems with ideal gas EOS. For evaporation prob-
lems, it must be solved carefully. Since the front is considered as a discontinuity, the Rankine–Hugoniot

relations for the Euler equations express the mass, momentum and energy conservation principles across

the front. However, this front being subsonic, a precursor acoustic wave is present. In order to remove

the indeterminacy produced by the extra state resulting from the precursor wave propagation, an additional

relation is required: the �kinetic relation�. This one selects the front velocity and uniqueness of the reactive
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Riemann problem solution is recovered. Among the available kinetic relations, two of them are of interest.

The first one is the quasi-constant pressure deflagration, like flame fronts [10] and smooth evaporation

fronts. In this case, pressure variations are very weak and temperature evolutions are inversely proportional

to those of densities. Nevertheless, this is not the case for a strongly superheated liquid state where the sys-

tem tends towards equilibrium as fast as possible but with a finite rate. Then the second kinetic relation,

corresponding to a maximum admissible mass flow rate through the front, is of fundamental importance:

the Chapman–Jouguet (CJ) deflagration point. For highly superheated liquids, the assumption of a CJ def-

lagration front velocity has been suggested by Simões-Moreira and Shepherd [32], as well as analogy
between evaporation and deflagration fronts. In the present work, we often use the expressions �deflagra-
tions� and �evaporation fronts� indifferently even if substantial differences exist between these phenomena.

The reason is that the solution for both types of front belongs to the deflagration branch of the Crussard

curve we shall describe in Section 3. The denomination �deflagration branch� has an historical origin and

denotes in fact the admissible locus for subsonic fronts. Thus, in [32], in the particular case of dodecane,

the authors made several experiments, described in Fig. 1, involving different initial temperatures of the li-

quid. For each experiment, they measured the superheated liquid temperature, the pressure behind the

evaporation front and the front velocity. The experimental results (symbols) are represented in Fig. 5. In
the same figure, we also represent the theoretical curves (lines) corresponding to the resolution of the Ran-

kine–Hugoniot system coupled with the CJ deflagration relation and each phase EOS.

The agreement between experimental and theoretical results being very good, this particular kinetic law

is adopted in this paper. Thus this law fulfils simultaneously two important features. First, this relation al-

lows the reactive Riemann problem closure and its resolution. Secondly, it is used in order to express the

macroscopic dynamics of the front summarizing the internal mechanisms (diffusion and capillarity) as well
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Fig. 5. Experimental (symbols) and theoretical (lines) values associated to experiments described in Fig. 1 from [32]. Theoretical values

are calculated by the use of Rankine–Hugoniot relations and the CJ deflagration kinetic relation.
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as multi-dimensional front instabilities. The resolution of the reactive Riemann problem associated to evap-

oration fronts including the CJ deflagration kinetic law is achieved in Section 3.

Nevertheless, the resolution of such a problem only provides a one-dimensional local solution. The

applications mentioned before necessitate the multi-dimensional propagation of such fronts. Then, the

reactive Riemann solver must be used along the front normal to determine the mass flow rate, momen-
tum and energy transfers across the front. Nevertheless, an important remark must be expressed. Let us

assume the presence of an evaporation front inside a control volume. We shall see in Section 3 that all

variables (pressure, density, velocity and entropy) are strongly discontinuous through the evaporation

front. In a single-phase type model, the averaging procedure inside the cell implies unique values for

the different variables. Then the solutions provided by the reactive Riemann problem are irremediably

lost, leading to a non-physical solution. This problem comes from the fact that fluids on both sides of

the front have different thermodynamic properties. To reproduce the physical solution, we must clearly

use two sub-volumes in the cell (each one corresponding to a pure fluid) and two systems of equations
linked by the associated Rankine–Hugoniot relations across the front. The discrete equations method

(DEM) [2,29,8] fulfils simultaneously these conditions. It consists in the integration of interface prob-

lems solutions over a two-phase control volume. Such solutions are provided by the Riemann problem.

Initially developed for two-phase mixtures and interface problems, this method is extended to reactive

fronts (RDEM) in Section 4. Section 5 is devoted to several validations of the method. Some illustra-

tions showing its capabilities are also provided.
2. Determination of pure fluid equations of state

In this section, we briefly recall the method developed in [23]. Combination of the pure fluid EOS under

thermodynamic equilibrium must be able to reproduce the liquid–vapor phase diagram. Thus, the various

parameters of both EOS are strongly dependant. The corresponding EOS will be widely used when dealing

with the reactive Riemann solver associated to evaporation fronts in Section 3.

We have chosen to represent each fluid thermodynamics by the �Stiffened Gas� EOS [19]. Indeed, this

EOS contains the main properties of the matter that are repulsive effects in gases, repulsive and attractive
effects in liquids. The �Stiffened Gas� EOS reads:
eðP ; qÞ ¼ P þ cP1

ðc� 1Þq þ q; ð1Þ
where e, P and q are, respectively, the specific internal energy, the pressure and the density of the

fluid. c, P1 and q (energy of the fluid at a given reference state) are constant parameters, character-

istic of the thermodynamic behavior of the fluid. The sound speed, for this particular EOS, reads

c2 = (c(P + P1))/q.
Using Maxwell laws and Gibbs identity, EOS (1) may be reformulated in function of pressure P and

temperature T:
eðP ; T Þ ¼ P þ cP1

P þ P1
CvT þ q; ð2Þ

qðP ; T Þ ¼ P þ P1

ðc� 1ÞCvT
; ð3Þ

hðT Þ ¼ cC T þ q; ð4Þ
v
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sðP ; T Þ ¼ Cv ln
T c

ðP þ P1Þc�1
þ q0; ð5Þ

GðP ; T Þ ¼ hðT Þ � TsðP ; T Þ ¼ ðcCv � q0ÞT � CvT ln
T c

ðP þ P1Þc�1
þ q; ð6Þ
where h, s and G are, respectively, the specific enthalpy, the specific entropy and the Gibbs function of the

fluid. Cv is the heat capacity at constant volume and q 0 is also a characteristic constant. More details about
the determination of such EOS may be found in [23].

Each pure phase is described by EOS (1) with appropriate parameters that are connected through ther-

modynamic equilibrium condition. Hereafter, the liquid and the vapor EOS are associated, respectively, by

subscripts l and g. In order to reproduce the experimental saturation curves, we assume that both phases

have the same pressure, temperature and Gibbs function. Equalling the Gibbs functions of both phases, a

relation P(T) is obtained, analog to the experimental saturated vapor pressure Psat(T):
lnðP þ P1;gÞ ¼ Aþ B
T
þ C ln T þ D lnðP þ P1;lÞ; ð7Þ
where
A ¼
clCv;l � cgCv;g þ q0g � q0l

ðcg � 1ÞCv;g
; B ¼

ql � qg
ðcg � 1ÞCv;g

; C ¼
cgCv;g � clCv;l

ðcg � 1ÞCv;g
; D ¼ ðcl � 1ÞCv;l

ðcg � 1ÞCv;g
:

In addition, the analog to the experimental latent heat of vaporization Lv(T) is obtained with the following

relation:
LðT Þ ¼ hgðT Þ � hlðT Þ ¼ ðcgCv;g � clCv;lÞT þ qg � ql: ð8Þ
One can show that relations (7) and (8) verify the Clausius–Clapeyron relation given by:
LðT Þ ¼ T ðvgðT Þ � vlðT ÞÞ
dP
dT

; ð9Þ
where vg = 1/qg and vl = 1/ql are, respectively, the specific volumes of the vapor and the liquid along the

saturated vapor pressure P(T). Then, the fitting of the preceding theoretical saturation curves to the exper-

imental ones, given in [26,27] for example, allows the complete determination of each phase EOS param-

eters. Appropriate procedures for their determination are described in [23].

For dodecane, the calculated parameters are cl = 2.19, P1,l = 4 · 108 Pa, ql = �755 · 103 J/kg,
q0l ¼ 0 J=kg=K, Cv,l = 1077 J/kg/K, cg = 1.025, P1,g = 0 Pa, qg = �237 · 103 J/kg, q0g ¼ �24� 103 J=kg=K
and Cv,g = 1956 J/kg/K. For water and steam, the parameters are cl = 2.35, P1,l = 109 Pa,

ql = �1167 · 103 J/kg, q0l ¼ 0 J=kg=K, Cv,l = 1816 J/kg/K, cg = 1.43, P1,g = 0 Pa, qg = 2030 · 103 J/kg,

q0g ¼ �23 � 103 J=kg=K and Cv,g = 1040 J/kg/K.

As an illustration, experimental (lines) and theoretical (dotted lines) saturation curves are shown in Fig.

6 for dodecane. The temperature range used for the EOS parameters fitting was 300–500 K. It appears

clearly that inside this range the agreement between theoretical and experimental curves is excellent. Out

of this range, in particular close to the critical point, the accuracy decreases. Another temperature range
may be chosen when a better accuracy is required for higher temperatures. For the present applications,

the temperature range 300–500 K is appropriate enough and we shall never deal with thermodynamic con-

ditions close to the critical point.

In the next section, the resolution of the reactive Riemann problem associated to evaporation fronts is

detailed using �Stiffened Gas� EOS.
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obtained using pure fluid �Stiffened Gas� EOS.
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3. The reactive Riemann problem for the Euler equations

In this section, the solution of the reactive Riemann problem is established for the one-dimensional mix-

ture Euler equations. The mixture Euler equations are used because the evaporation front separates a pure

liquid from a liquid–vapor mixture under thermodynamic equilibrium.

The Riemann problem is of fundamental importance concerning the numerical strategy developed for

the multi-dimensional front propagation.
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Before dealing with the reactive Riemann problem, we recall the basis of a conventional Riemann solver

for the Euler equations. The reactive Riemann solver shall use the same ingredients, completed by addi-

tional relations associated to the evaporation front.

3.1. Recalls on the inert Riemann problem

The inert Riemann problem associated to the Euler equations is given by:
oUðx;tÞ
ot þ oF ðUðx;tÞÞ

ox ¼ 0;

Uðx; 0Þ ¼
UL if x < 0;

UR if x > 0;

�8><>: ð10Þ
where U(x,t) = (q,qu,qE)T and F(U(x,t)) = (qu,qu2 + P,(qE + P)u)T.

UL and UR are constant initial states. q, u and P are, respectively, the density, the material velocity and

the pressure. The total energy is defined as E = e + 1/2u2, where e is the internal energy. The system (10) is

closed by the �Stiffened Gas� EOS given by relation (1).

The problem (10) consists in finding the intermediate constant states U �
L and U �

R delimited by the

various waves (expansions, shocks or contact discontinuities) present in the medium.

The different jump relations available across the various waves are of three types: Riemann invariants

(isentropic relations) for rarefaction waves, Rankine–Hugoniot relations for shock waves and interface
conditions for the contact discontinuity u.

Across this one, the interface conditions are u = cst and P = cst.

Across rarefaction waves, the isentropic relations are:
u ¼ u0 �
2c0
c� 1

P þ P1

P 0 þ P1

� �ðc�1Þ=2c

� 1

 !
ð11aÞ

q ¼ q0

P þ P1

P 0 þ P1

� �1=c

ð11bÞ
with ± for right- and left-facing expansion waves, respectively. The state with subscript 0 is the state in

which rarefaction waves propagate.
The Rankine–Hugoniot relations are given by:
u ¼ u0 þ m
1

q0

� 1

q

� �
; ð12aÞ

P ¼ P 0 þ m2 1

q0

� 1

q

� �
; ð12bÞ

e ¼ e0 þ
P þ P 0

2

1

q0

� 1

q

� �
; ð12cÞ
where m = q0(r � u0) represents the mass flow rate (r is the shock speed) and the state with subscript 0 is

the state in which the shock propagates. Using the �Stiffened Gas� EOS (1), system (12) writes:
u ¼ u0 �
P � P 0

q0c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ1

2c
PþP1
P 0þP1

� �
þ c�1

2c

r ; ð13aÞ
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m2 ¼ ðq0c0Þ
2 cþ 1

2c
P þ P1

P 0 þ P1

� �
þ c� 1

2c

� �
; ð13bÞ

q ¼ q0

ðcþ 1Þ PþP1
P0þP1

� �
þ c� 1

ðc� 1Þ PþP1
P0þP1

� �
þ cþ 1

; ð13cÞ
with ± for right- and left-facing shock waves, respectively.

Thus, relations (11a) and (13a) write under the same form:
u ¼ u0 � /0ðP Þ; ð14Þ

with
/0ðP Þ ¼

P�P0

q0c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ1
2c

PþP1
P0þP1

� �
þc�1

2c

r if P > P 0;

2c0
c�1

PþP1
P 0þP1

� �c�1
2c � 1

� �
otherwise:

8>>>><>>>>: ð15Þ
Now substituting subscript 0 in (14) and (15) by subscripts L and R corresponding to the left and right

states, respectively, we get:
u� ¼ uL � /LðP �Þ; ð16Þ

u� ¼ uR þ /RðP �Þ; ð17Þ

where the interface conditions u�L ¼ u�R ¼ u� and P �

L ¼ P �
R ¼ P � have been used.

Thus, the combination of (16) and (17) leads to a scalar equation:
F ðP �Þ ¼ uR � uL þ /RðP �Þ þ /LðP �Þ ¼ 0: ð18Þ

The solution of (18) is obtained by using an iterative numerical method (Newton–Raphson for example).

Once the pressure P* is obtained, the other flow variables are calculated from the appropriate relations

given previously. More details about the resolution of the inert Riemann problem are described for example

in [9,18,25,37]. An example of solution obtained by such solver is provided hereafter.

An initial velocity discontinuity is located at the middle of a 1-m length tube. The velocities are initially

�500 m/s at the left and +500 m/s at the right. The domain contains a liquid at atmospheric pressure whose

density is q = 1000 kg/m3. The EOS parameters are c = 4.4 and P1 = 6 · 108 Pa.
This symmetric problem appears for example in the treatment of wall boundary conditions used in

Godunov type schemes. The solution, represented at time t = 200 ls in Fig. 7, consists in two symmetric

rarefaction waves propagating to the left and to the right. At the middle of the domain, the velocity is zero

while the pressure decreases to negative values. Even at such pressure levels, the sound speed is defined be-

cause the term (P + P1) remains positive. This solution is not physically acceptable. Indeed, through a

strong expansion wave, the liquid reaches a thermodynamic state inside the saturation dome: it becomes

superheated. Then the liquid transforms into vapor in order to reach an equilibrium state at positive

pressure. These effects are taken into account in the next part.
3.2. The reactive Riemann problem

Isentropic and shock relations described in the previous part are used again in the reactive Riemann

problem but are only valid among pure fluids. The physical phenomenon we have to describe (Fig. 1) leads
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to an additional front through which vapor appears. Such reactive fronts are described in [9,11,18,35] for

example. Like any discontinuity, this front obeys the Rankine–Hugoniot relations (12). But, contrary to

classical shocks, the EOS parameters are different on both sides of the front. In addition, as reported in

Section 1, a kinetic relation must complete the Rankine–Hugoniot relations.
3.2.1. Available relations across reactive fronts

The thermodynamic behavior of the superheated liquid (subscript 0) obeys:
e0ðP 0; q0Þ ¼
P 0 þ c0P10

ðc0 � 1Þq0

þ q0: ð19Þ
While the appearing fluid (vapor) obeys:
eðP ; qÞ ¼ P þ cP1

ðc� 1Þq þ q: ð20Þ
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Here, we assume a total evaporation. We shall examine later the case where a mixture appears behind the

front. Combining relations (12c), (19) and (20), we obtain:
q ¼ q0

cþ1

c�1
ðP þ P1Þ þ P 0 þ P1

c0þ1

c0�1
ðP 0 þ P10Þ þ P þ P10 � 2q0Dq

; ð21Þ
where Dq = q � q0 denotes the difference between reference energies. The relation (21) represents the Crus-

sard curve relative to the initial state (q0,P0). This curve (see Fig. 8) is divided in three parts. One of them

(dotted lines) is a non-physical area because it corresponds to positive slopes (m2 < 0) of the Rayleigh line

represented by relation (12b). Two points delimit this non-admissible area. The first one corresponds to a

constant pressure deflagration (P = P0) whose associated density is given by:
qp ¼
cðP 0 þ P1Þ

c�1

c0�1
c20 � ðc� 1ÞDq

< q0: ð22Þ
The second point corresponds to a constant volume explosion (q = q0) whose associated pressure reads:
Pv ¼
c� 1

c0 � 1
ðP 0 þ c0P10Þ � cP1 � ðc� 1Þq0Dq > P 0: ð23Þ
The upper part of the Crussard curve in Fig. 8 corresponds to the detonation branch (P > Pv) while the

lower part represents the deflagration branch (P < P0). The detonation branch cannot be reached because

vapor appearance would be non-sense in this case. Indeed this zone corresponds to situations where

compression waves are present in the medium, bringing the liquid back to a non-superheated state.
Consequently, the solution locates in the deflagration area: the evaporation front is undercompressive.

Now, combining relations (12b) and (21) the mass flow rate read:
m2 ¼ q0

2
ðcþ 1ÞðP þ P1Þ þ ðc� 1ÞðP 0 þ P1Þð Þ P � P 0

P � Pv
: ð24Þ
The combination of relations (12a), (12b) and (24) gives the following material velocity expression:
u ¼ u0 � sgðP � P 0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðP � P 0ÞðP � PvÞ

q0 ðcþ 1ÞðP þ P1Þ þ ðc� 1ÞðP 0 þ P1Þð Þ

s
ð25Þ
with ± for a right(left)-facing front, respectively.

Nevertheless, all the relations above are valid when the evaporation is total. Such situation occurs when

the degree of superheat is high and the latent heat of vaporization is small enough. But in some cases these
two conditions are not satisfied (see [33] for example). In this case, a liquid–vapor mixture at equilibrium

(thermodynamically and cinematically) appears behind the front. Thus, the associated thermodynamic state

lies inside the saturation dome and belongs to the mixture Crussard curve we detail hereafter.
CJ deflagration point

CJ detonation point

Crussard curve
Rayleigh

lines

P

v

P0

v0

Fig. 8. Crussard curve and Rayleigh line in a (P,v) diagram associated to a superheated liquid state (subscript 0).



578 O. Le Métayer et al. / Journal of Computational Physics 205 (2005) 567–610
Such a mixture is governed by the homogeneous Euler equations:
oUðx; tÞ
ot

þ oF ðUðx; tÞÞ
ox

¼ 0; ð26Þ
where U(x,t) = (q,qu,qE)T and F(U(x,t)) = (qu,qu2 + P,(qE + P)u)T. Here q represents the mixture density

q = (aq)g + (aq)l and e = E � 1/2u2 is the mixture internal energy defined as qe = (aqe)g + (aqe)l, where ak is
the volume fraction of the phase k (k = g,l). Each phase EOS ek(P,T) and qk(P,T), given by relations (2) and

(3), are also used. Assuming that liquid and vapor are in thermodynamic equilibrium, we use the saturation

curve T(P) given by relation (7). Then, each phase EOS only depend on the pressure P, ek(P) and qk(P).
The mixture variables read:
q ¼ ql þ agðqg � qlÞ ¼ qðP ; agÞ;
e ¼ 1

q qlel þ agðqgeg � qlelÞ
� �

¼ eðq; P ; agÞ:

(
ð27Þ
Combining relations of system (27), the mixture EOS reads:
eðq; P Þ ¼ 1

q
qlel þ

q� ql

qg � ql

ðqgeg � qlelÞ
 !

: ð28Þ
By using the definition of the sound speed c2 ¼ ðoP
oq Þs ¼

ð P
q2
�oe

oqÞP
ðoe
oPÞq

and the mixture EOS (28), we obtain the

following relation:
1

qc2
¼ ag

qgc2g
þ al
qlc

2
l

þ T
agqg

CP ;g

dsg
dP

� �2

þ alql

CP ;l

dsl
dP

� �2
 !

; ð29Þ
where CP,g and CP,l are heat capacities at constant pressure of both phases and
dsg
dP ;

dsl
dP are derivatives along

the saturation curve T(P). In relation (29), the term
ag
qgc

2
g
þ al

qlc
2
l

¼def 1
qc2w

is the Wood formula [39] representing
the mixture sound speed where only pressure equilibrium between phases is considered.

Thus the mixture sound speed c is defined since cg and cl are defined. In addition, the mixture EOS (28) is

convex. Indeed, an EOS is convex if c2 P 0 and c2

v2 ðoTos Þv P ½ðoP
os Þv�

2
. In our case, the first condition is fulfilled

by relation (29). Now using the saturation curve T(P), we have ðoT
os Þv ¼ dT

dP ðoPos Þv and c2

v2
dT
dP ¼ ðoP

os Þv. Then the

second condition is fulfilled too.

We now detail the building of the mixture Crussard curve lying inside the saturation dome. Such a li-

quid–vapor mixture obeying the homogeneous Euler equations (26), the Rankine–Hugoniot relations

(12) remain unchanged. Combining relations (27) and (12c), we obtain:
agðP Þ ¼
e0 � el þ PþP0

2
1
q0
� 1

ql

� �
e0 � el þ PþP0

2
1
q0
� 1

ql

� �
� qg

ql
e0 � eg þ PþP0

2
1
q0
� 1

qg

� �� � : ð30Þ
Then the mixture density obeys the relation:
qðPÞ ¼ ql þ agðP Þðqg � qlÞ; ð31Þ
whose curve in a (P,v) diagram is the mixture Crussard curve represented in Fig. 9, only valid inside the

saturation dome.

In brief, whatever the medium behind the front is (pure vapor or liquid–vapor mixture), the available

relations across the front are the Rankine–Hugoniot relations (12) associated to the Euler equations (26).

It is important to note the presence of two particular points in Figs. 8 and 9. These are tangential points
of the Rayleigh line and the Crussard curve. The high-pressure solution (P > Pv) and the low-pressure solu-
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Fig. 9. Mixture Crussard curve and Rayleigh line in a (P,v) diagram associated to a superheated liquid state (subscript 0).
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tion (P < P0) are named, respectively, the Chapman–Jouguet detonation and deflagration points (CJ

points).
3.2.2. Properties of the Chapman–Jouguet points

Geometrically (see Fig. 8), these points are characterized by dP
dq ¼ m2

q2 (the derivative of the Crussard curve

coincides with the slope of the Rayleigh line).

Differentiation of the Rayleigh line equation (12b) yields to:
dP ¼ m2

q2
dqþ 1

q0

� 1

q

� �
dm2: ð32Þ
Then, from (32) we deduce that dm2/dP = 0 at these particular points. Indeed, at the CJ detonation (def-

lagration) point, the slope of the Rayleigh line (�m2) is locally a maximum (minimum). Consequently,

the mass flow rate m and the speed of the front D are locally minima (maxima). In addition, it can be shown

that specific entropy is locally a minimum (maximum) at the CJ detonation (deflagration) point [11,18].

Since ds = 0, we can use the equivalent relation dP = c2dq to obtain:
m2 ¼ q2c2 () D ¼ u� c; ð33Þ
with ± for right(left)-facing fronts, respectively.
When only pure vapor is produced across the front, the CJ points may be determined explicitly. Indeed,

with the help of the �Stiffened Gas� EOS, relation (33) becomes:
m2 ¼ cqðP þ P1Þ: ð34Þ

Combining relations (12b), (21) and (34), we obtain a second-order equation in P:
P 2 � 2PvP þ P 2
0 þ 2ðP 0 � PvÞ

cP1 � P 0

cþ 1
¼ 0: ð35Þ
The two solutions of (35) are the pressures associated to CJ points:
PCJ ¼ Pv �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPv � P 0Þ Pv þ P 0 þ

2

cþ 1
ðcP1 � P 0Þ

� �s
; ð36Þ
with ± for the CJ detonation (deflagration) point, respectively.

Now, when CJ deflagration point corresponds to a thermodynamic mixture state, as represented in Fig.

9, the previous explicit calculations cannot be achieved. In this case, we use another property of the CJ

point, that is dm2/dP = 0 along the mixture Crussard curve for P < P0.
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The combination of (12b) and (31) gives the following relation:
m2ðP Þ ¼ P � P 0

1
q0
� 1

qðPÞ
: ð37Þ
Derivation of the expression (37) with respect to the pressure P leads to:
dm2

dP
¼ 0 () q0

qðPÞ
dqðP Þ
dP

� qðPÞ � q0

P � P 0

¼ 0: ð38Þ
The term dq(P)/dP is obtained by successive derivations of the different variables ek(P) and qk(P) in rela-
tions (30) and (31). The value of the CJ deflagration pressure is thus obtained by a numerical procedure to

solve Eq. (38). Such procedure is preferred to the use of the mixture sound speed (29). It can be noticed that

convexity of the mixture EOS examined before implies the existence of CJ points.

3.2.3. Waves patterns in the reactive Riemann problem

As the evaporation front is subsonic with respect to the medium in which it propagates, it is preceded by

a precursor wave (shock or expansions) propagating approximately at the liquid sound speed, as repre-

sented in Fig. 1. By enumerating the various unknowns (pressure, density and flow velocity for each inter-
mediate state and two wave speeds: shock and evaporation front) and the available relations (three

Rankine–Hugoniot relations for shock and evaporation front, two relations for expansion waves and con-

tact discontinuity), we have 11 unknowns and 10 relations. The kinetic relation that controls the phase

change rate achieves the Riemann problem closure. In the rest of the paper, we adopt the CJ deflagration

kinetic relation, for evaporation problems.

This kinetic relation may be understood by the following interpretations. This one corresponds to a max-

imal entropy jump across the front and a maximal front velocity. Thus, it is not a stable point contrary to

the CJ detonation point. It can be seen as the maximal mass flow rate that cannot be overstepped. For
example, in low combustion phenomena, the front stability is due to thermal diffusion. Nevertheless, the

mass flow rate and the front velocity cannot exceed the ones associated to the CJ deflagration limit. This

is exactly the same case for evaporation fronts. These ones appear as a consequence of liquid expansion.

The pressure drop in the liquid through expansion waves increases when the initial pressure ratio increases

too, as well as the metastable character of the superheated liquid. As the system tends to relax as fast as

possible towards equilibrium, we observe microscopic interface instabilities that tend to maximize front

area in order to reach the maximum mass flow rate.

At the macroscopic scale, where the front is considered as a discontinuity, the effects related to the
increase of front area have magnified the local mass flow rate. Thus the CJ condition appears as a macro-

scopic kinetic relation involving both effects of local mass flow rate and multi-dimensional effects that tend

to maximize front area. The CJ kinetic relation consists in a global (by opposition to local) relation that

summarizes multi-dimensional instabilities.

In brief, for both situations of partial or total evaporation, the front is always preceded by a precursor

wave. During the resolution of the reactive Riemann problem, we designate by �composite wave� the waves
group composed of the precursor and the CJ deflagration front. The precursor could be compressive or

undercompressive according to the pressure behind the front as represented in Fig. 10.

3.2.4. Resolution of the reactive Riemann problem

The resolution depends on a liquid �reactivity factor�. This factor expresses the fact that the liquid may

change phase or not. First, an inert resolution is done like in the previous subsection. Then, we compare the

solution P* with the associated saturated pressure Psat(T*), where T* is the liquid temperature.

If P* > Psat(T*), the liquid is not superheated and does not transform into vapor. In this case, the Rie-

mann problem remains inert. If P* < Psat(T*) then the liquid is superheated (thermodynamic state inside
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the saturation dome). In this case, we have to solve the associated reactive Riemann problem. This one is

solved using an iterative method, like in the inert case. At each iteration, the pressure P* determines the

waves pattern (simple or composite waves) that must be considered so as to connect the state associated

to P* to the left and right states denoted by subscripts L and R.

Let us recall that in the inert case, two instances are possible:

� if P* P P0, the wave corresponds to a shock and we use the Rankine–Hugoniot relations (13),

� if P* 6 P0, the wave is an expansion and we use the isentropic relations (11).

If the fluid is a liquid, a CJ deflagration front connects the CJ state P* to an intermediate state 0* (super-

heated liquid). This front is preceded by the precursor wave connecting the state 0* and the initial state 0 of

the liquid. Then two cases are possible to connect the states 0* and 0:

� if P �
0 > P 0, the precursor is a shock and we use the relations (13),

� if P �
0 6 P 0, the precursor is an expansion wave and we use the relations (11).

The relations associated to the previous waves patterns can be written under a common form:
u� ¼ u0 � /0ðP �Þ; ð39Þ
with
/0ðP �Þ ¼

P��P0

q0c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0þ1

2c0

P�þP10
P0þP10

� �
þc0�1

2c0

r if P � > P 0 ðinertÞ;

2c0
c0�1

P�þP10

P0þP10

� �ðc0�1Þ=2c0
� 1

� �
if P �

6 P 0 ðinertÞ;

u�0 � u0 þ
P��P�

0

mCJðP�Þ ðreactiveÞ;

8>>>>>>><>>>>>>>:
ð40Þ
where mCJ(P*) is the CJ mass flow rate through the reactive front with respect to the state 0*.

This one is calculated so that the pressure P* coincides exactly to the CJ deflagration pressure. For each

value of P*, a unique associated state 0* is obtained by an iterative method we detail hereafter.
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For each value of P �
0, the associated density is given by:
q�
0 ¼

q0

ðc0þ1Þ
P�
0
þP10

P0þP10

� �
þc0�1

ðc0�1Þ
P�
0
þP10

P0þP10

� �
þc0þ1

if P �
0 > P 0;

q0

P �
0
þP10

P 0þP10

� �1=c0
otherwise;

8>>>><>>>>: ð41Þ
Then the density qCJ and the mass flow rate mCJ are obtained either by relations (21) and (34) in the total
evaporation case or relations (31), (37) and (38) in the partial evaporation case.

Then we use the Rayleigh line equation (12b) to update P �
0 at each iteration:
P �
0 ¼ P � � m2

CJ

1

q�
0

� 1

qCJ

� �
: ð42Þ
The value of P �
0 is then modified until convergence is obtained. The other variables associated to the state 0*

are determined either by relations (13) or by relations (11) in accordance with P �
0.

Now substituting subscript 0 in (39) and (40) by subscripts L and R corresponding to the left and right

states, respectively, we get:
u� ¼ uL � /LðP �Þ; ð43Þ

u� ¼ uR þ /RðP �Þ: ð44Þ

Combining relations (43) and (44), a scalar equation is recovered:
F ðP �Þ ¼ uR � uL þ /RðP �Þ þ /LðP �Þ ¼ 0: ð45Þ

The solution P* is determined again by an iterative method (Newton–Raphson for example). Once P* is

obtained, the waves patterns and the whole solution of the reactive Riemann problem are uniquely
determined.
3.2.5. Examples of reactive Riemann problem solutions

We present here two examples of reactive Riemann problem solutions. The first one is dealing with a

total evaporation front while the second one is dealing with a partial evaporation front. In all cases, the

different phases are liquid dodecane and its vapor whose EOS parameters are given in Section 2.

In the first example, a liquid at atmospheric pressure with density q = 600 kg/m3 (right) is connected to a

low-pressure chamber P = 100 Pa (left) filled with gaseous dodecane whose density is q = 10�4 kg/m3. Ini-
tially the medium is at rest. The initial discontinuity is located at x = 0.5 m in a 1-m length tube.

The exact solution is represented at time t = 370 ls in Fig. 11. It consists in a shock wave propagating

towards the low-pressure chamber and an expansion wave propagating into the initial liquid. This one

becomes superheated and is travelled by the evaporation front at low speed. In the pressure graph, the rar-

efaction waves look like a discontinuity because the liquid sound speed is much larger than material velocity.

In the second example, a 1-m length tube is filled with liquid dodecane at atmospheric pressure and den-

sity q = 600 kg/m3. An initial material velocity is located at x = 0.5 m. On the left, the velocity is set to

u = �100 m/s and on the right, u = + 100 m/s. The exact solution of this symmetric problem is represented
at time t = 300 ls in Fig. 12. It consists in left and right-facing rarefaction waves propagating into the liquid

on both sides of the initial velocity discontinuity. Two partial evaporation fronts propagate towards the

superheated liquid. This last example is of fundamental importance for cavitation as mentioned previously

in the inert case. Indeed, wall boundary conditions use fictitious cells corresponding to such Riemann prob-

lem. This example explains why cavitation pockets may appear in multi-dimensional flows at geometrical

singularities.
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The waves mechanism has been introduced in the reactive Riemann problem. The amplitude of expan-

sion waves in cavitating flows is so high that the use of the CJ deflagration kinetic relation is justified. Nev-

ertheless, in more general situations, evaporation front does not always obey this limit kinetic law. Indeed,

the mass flow rate through the reactive front may not be a maximum, like in very low phenomena based on
diffusive effects with large characteristic time scales. In this case, thermal diffusion must be considered as

well as capillary effects for the determination of an appropriate kinetic law. Such a kinetic law can be

obtained by the study of travelling waves of the Euler equations augmented by thermal diffusion or other

capillary model as in [14]. This work is actually in progress. Once the kinetic relation is determined, it would

be quite easy to replace the CJ deflagration law by such relation in the present reactive Riemann solver. For

now, we restrict the applications to cavitating flows and adopt the CJ kinetic relation.

The next issue is the second challenge of this work. It consists in the two-dimensional propagation of the

subsonic evaporation front. To our knowledge, there is no method able to deal with such an issue. Some
success has been obtained in one dimension with the random choice method [17,9] and the works of [22]

because the composite waves are correctly handled by such methods. In two dimensions, as we do not want
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to compute the front structure as done usually with flames, we need a method able to propagate a subsonic

discontinuity with composite features. In the next section, we reach this goal by extending the discrete equa-

tions method (DEM) [2,29,8].
4. Implementation of the reactive Riemann solver into the discrete equations method (DEM)

In order to treat multi-dimensional propagation of evaporation fronts, we extend in this section the

numerical method named DEM (discrete equations method), recently proposed by [2,29,8] for interface

problems and multiphase mixtures. This method consists in connecting several systems of equations, each

one being associated to a pure fluid. It leads to discrete equations that can be used for interface problems or

multiphase flows with several velocities. It may be considered as an homogenization method belonging to

the class of averaging methods.
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Usually, multiphase flows equations are obtained by mathematical averaging procedures [12]. An-

other option is based on the Hamilton principle as given in [16] for example. Both methods yield to

non-conservative systems where average interfacial variables appear [30]. In all cases, the resulting sys-

tem must be solved by numerical approximations. In this kind of approach, the determination of the

average variables as well as the numerical approximation of the non-conservative terms is always
questionable.

These difficulties are solved by the present method. Contrary to conventional methods, the averaged

equations for the mixture are not used. Interface problems between pure fluids are solved locally with

the help of their own governing equations. In [2], it was done with the Euler equations for each fluid result-

ing in interface problem solution obtained with conventional Riemann solver. In [29], a turbulent flow

model was used in each fluid with the associated Riemann problem solution. The local interface variables

are determined at each interface of the two-phase flow mixture whose topology is given a priori. Then, an

averaging procedure is applied over all these solutions. In that sense, it proceeds like a conventional Godu-
nov scheme. The averaged interface solutions provide a set of discrete equations that can be used directly as

a numerical scheme. Their continuous limit was obtained in [29] and identified to the Baer–Nunziato model

[5] with more general closure relations for averaged interface variables.

In the present paper, we use the discrete equations method as a numerical scheme to propagate perme-

able fronts. Nevertheless, important extensions are necessary since the reactive Riemann problem built in

Section 3 is used. This is the main topic of this section. We shall see that this method is able to treat cor-

rectly the non-conservative terms and to take into account all waves present in the medium including reac-

tive fronts. Moreover, this method is absolutely necessary to solve special features of subsonic fronts as
reported in introduction.

In the following, we first recall the basis of this method for two inert fluids. We then extend the method

to reacting fluids with permeable fronts. Additional terms (reactive fluxes) appear and modifications of the

Eulerian and Lagrangian fluxes introduced in [2,29] are necessary.
4.1. Recalls on the discrete equations method for inert fluids

For any type of two-phase mixture (liquid drops into a gas, gas bubbles into a liquid, separated and
annular flows) as well as flows with macroscopic interfaces, each pure fluid is assumed to obey the Euler

equations. They interact via their interfaces at the microscopic scale when dealing with mixtures and at

macroscopic scale when dealing with interface problems. The averaging of the various interactions inside

a two phase control volume yield couplings between the two fluids that appear as macroscopic variables

like the volume fraction and non-conservative terms or Lagrangian fluxes as introduced in [2,29,8]. In

the following, we summarize this method considering only a separated flow topology.

The interfaces under study evolving in two dimensions, each pure fluid obeys the 2D Euler equations:
oU
ot

þ oF
ox

þ oG
oy

¼ 0; ð46Þ
where U = [1, q, qu, qv, qE]T, F = [0, qu, qu2 + P, quv, (qE + P)u]T and G = [0, qv, quv, qv2 + P,
(qE + P)v]T.

The first trivial equation o1
ot þ o0

ox þ o0
oy ¼ 0 comes from an evolution equation expressing the link between

the Lagrangian and Eulerian coordinates. This trivial identity will be necessary to obtain the volume frac-

tion numerical scheme.

To obtain the local equations of each pure fluid k, we multiply the Euler equations (46) by the phase

function vk of each fluid. This one only admits two values: vk(M,t) = 1 if the point M is located in the phase

k at time t and vk(M,t) = 0 otherwise. This function obeys the local evolution equation:
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ovk
ot

þ rx
ovk
ox

þ ry
ovk
oy

¼ 0; ð47Þ
where rx and ry are the components of the local interface velocity.

After some algebraic manipulations, the local pure fluids equations are given by:
ovkU
ot

þ ovkF
ox

þ ovkG
oy

¼ F lag ovk
ox

þ Glag ovk
oy

; ð48Þ
where the Lagrangian fluxes are defined as Flag = F � rxU and Glag = G � ryU.

For interface problems between pure inert fluids we have rx = u and ry = v. In this case, the Lagrangian
fluxes write Flag = [�u, 0, P, 0, Pu]T and Glag = [�v, 0, 0, P, Pv]T.

Next we integrate in time and space over each computational cell Ci,j = ]xi�1/2,xi + 1/2[ · ]yj�1/2,yj + 1/2[ the

Eq. (48):
Z Dt

0

Z
Ci;j

ovkU
ot

þ ovkF
ox

þ ovkG
oy

� �
dV dt ¼

Z Dt

0

Z
Ci;j

F lag ovk
ox

þ Glag ovk
oy

� �
dV dt: ð49Þ
Relation (49) can be written as:
I1 þ I2 þ I 02 ¼ I3 þ I 03; ð50Þ

with
I1 ¼
Z Dt

0

Z
Ci;j

ovkU
ot

dV dt;

I2 ¼
Z Dt

0

Z
Ci;j

ovkF
ox

dV dt; I 02 ¼
Z Dt

0

Z
Ci;j

ovkG
oy

dV dt;

I3 ¼
Z Dt

0

Z
Ci;j

F lag ovk
ox

dV dt; I 03 ¼
Z Dt

0

Z
Ci;j

Glag ovk
oy

dV dt:
Now these five integrals have to be determined to obtain the discrete macroscopic equations of each fluid.

As an interface is not solved as a true discontinuity but rather as a diffusion zone (because of artificial
smearing), it corresponds to a series of cells with various levels (volume fractions) of fluids, as shown in

Fig. 13. In this way, at each cell boundary, we define a contact surface between fluids. For example,

S12,i � 1/2 represents the contact surface at cell boundary i � 1/2 between fluid 1 on the left (present inside

the cell Ci � 1,j) and fluid 2 on the right (present inside the cell Ci,j). At each cell boundary, only four types of

contact between pure fluids are possible. Each type of contact is associated to the corresponding surface.
x

lα 1

0

α2,i

α 2,i+1
Fluid2

α 2,i-1

Fluid1

Fluid1

Fluid2 Fluid2

i-1/2 i+1/2

Cell ij
Fluid1

j-1/2

j+1/2

α1,i+1α1,i
α1,i-1

Fig. 13. Numerical representation of an interface in the discrete equations method.
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Let us denote by (l,m) the configuration where the fluid l is present on the left and the fluid m is present

on the right at a given cell boundary. At each contact (l,m), the corresponding Riemann problem is solved.

Its solution, denoted in the following by the superscript �*�, is used for the computation of the various fluxes

(Eulerian and Lagrangian) that are then averaged over the cell surface.

In order to compute the integrals in (50), we define the following averaging operators:

� Volume average: hf i ¼ 1
V ij

R
V ij
f dV .

� Surface averages: bf ¼ 1
Dx

R xiþ1=2

xi�1=2
f dx; �f ¼ 1

Dy

R yjþ1=2

yj�1=2
f dy.

� Time average: ef ¼ 1
Dt

R Dt
0
f dt.

4.1.1. Integration of the temporal term I1
The first integral I1 reads:
I1 ¼
Z Dt

0

Z
Cij

ovkU
ot

dV dt ¼
Z
Cij

ðvkUÞnþ1
dV �

Z
Cij

ðvkUÞn dV ¼ vkUh inþ1
ij � vkUh inij

� �
V ij:
Using the volume average of the phase function vk in the cell Cij, we have:
vkh iij ¼
1

V ij

Z
Cij

vk dV ¼ V k;ij

V ij
¼def ak;ij;
where Vk,ij represents the volume occupied by the phase k in the cell Cij.

Then, the term I1 writes:
I1 ¼ ðakfUkgÞnþ1

ij � ðakfUkgÞnij
� �

V ij;
where fUkgij ¼
def 1

V k;ij

R
Ck;ij

Uk dV is the volume average of Uk in Vk,ij.

4.1.2. Integration of the convective fluxes I2 and I 02
The second integral I2 reads:
I2 ¼
Z Dt

0

Z
Cij

ovkF
ox

dV dt ¼
Z Dt

0

Z yjþ1=2

yj�1=2

ðvkF Þiþ1=2 dy dt �
Z Dt

0

Z yjþ1=2

yj�1=2

ðvkF Þi�1=2 dy dt:
Using the previous averages, we obtain:
I2 ¼ Dy
Z Dt

0

ðvkF Þiþ1=2 dt � Dy
Z Dt

0

ðvkF Þi�1=2 dt ¼ DtDy ðgvkF Þiþ1=2 � ðgvkF Þi�1=2

� �
:

In order to determine the average Eulerian flux gvkF at each cell boundary, we first compute the following

surface averages:
Z yjþ1=2

yj�1=2

ðvkF Þi�1=2 dy ¼
X
l;m

Sv�kF
�� �

lm;i�1=2
;

where Slm represents the contact surface for each pair of fluids in contact. Their expressions, reported in
Table 1 for cell boundary i � 1/2, are obtained following simple arguments provided in [29]. v�k;lm represents

the phase function of fluid k for the same pair. Its value is reported in the same table and is obtained from

the Riemann problem solution, according to the location of fluid k.

When fluid k is present on both sides of the interface, v�k ¼ 1. When the other fluid is present on both

sides, v�k ¼ 0. These situations correspond to the first and last lines of Table 1, respectively.



Table 1

The different configurations for Eulerian fluxes at cell boundary i � 1/2 for fluid k = 1

Contact Surface Eulerian flux Phase function v�1

1–1 S11 = Dy min(a1,i � 1,a1,i) F �
11 v�1;11 ¼ 1

1–2 S12 = Dy max(0,a1,i � 1 � a1,i) F �
12 v�1;12 ¼

1 if u�12 > 0

0 otherwise

�
2–1 S21 = Dy max(0,a1,i � a1,i � 1) F �

21 v�1;21 ¼
1 if u�21 < 0

0 otherwise

�
2–2 S22 = Dy min(a2,i � 1,a2,i) F �

22 v�1;22 ¼ 0
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When fluid k is present on the left, v�k ¼ 1 only if the fluid k is entering the cell (line 2 of Table 1). When it

is present on the right, v�k ¼ 1 only if the fluid k is leaving the cell (line 3 of Table 1).

As the Riemann problem is solved to determine the speed of the contact discontinuity u�lm, the whole

solution is sampled along the axis x/t = 0 and allows the various fluxes computation F �
lm.

The Eulerian fluxes are supposed to be constant during a time step (CFL condition), thus we have:
I2 ¼ Dt
X
l;m

Sv�kF
�� �

lm;iþ1=2
�
X
l;m

Sv�kF
�� �

lm;i�1=2

 !
:

The third integral I 02 is obtained as previously:
I 02 ¼
Z Dt

0

Z
Cij

ovkG
oy

dt dt ¼ DtDx ðgdvkGÞjþ1=2 � ðgdvkGÞj�1=2

� �
:

The Eulerian flux is obtained again by summing the different configurations of pairs in contact. Then, the

integral I 02 reads:
I 02 ¼ Dt
X
l;m

Sv�kG
�� �

lm;jþ1=2
�
X
l;m

Sv�kG
�� �

lm;j�1=2

 !
:

4.1.3. Integration of the non-conservative terms I3 and I 03
The fourth integral I3 provides the Lagrangian fluxes. It reads:
I3 ¼
Z Dt

0

Z
Cij

F lag ovk
ox

dV dt ¼
Z Dt

0

Z yjþ1=2

yj�1=2

Z xiþ1=2

xi�1=2

F lag ovk
ox

dx dy dt:
The only interfaces present in the flow topology considered in Fig. 13 are located at the cell boundaries.

Then, I3 writes:
I3 ¼
Z Dt

0

Z yjþ1=2

yj�1=2

F lag vxk
	 
� �

i�1=2
dy dt þ

Z Dt

0

Z yjþ1=2

yj�1=2

F lag vxk
	 
� �

iþ1=2
dy dt;
where vxk
	 


represents the jump of vk in the x-direction through an interface. As explained in [2], the pre-

ceding integration is allowed because the Lagrangian flux Flag is uniform at every location where ovk/ox
is non-zero.

By using the definitions of averages, we obtain:
I3 ¼ DtDy ð g
F lag vxk½ �Þi�1=2 þ ð g

F lag vxk½ �Þiþ1=2

� �
:



Table 2

The different configurations for Lagrangian fluxes at cell boundary i � 1/2 for fluid k = 1

Contact Surface Lagrangian flux Jump vx1
	 
�

1–1 S11 F lag;�
11 vx1

	 
�
11

¼ 0

1–2 S12 F lag;�
12 vx1

	 
�
12

¼ �1 if u�12 > 0

0 otherwise

�
2–1 S21 F lag;�

21 vx1
	 
�

21
¼ 1 if u�21 > 0

0 otherwise

�
2–2 S22 F lag;�

22 vx1
	 
�

22
¼ 0
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As for the calculations of the Eulerian fluxes, we use the considerations described in Table 2 (for cell bound-

ary i � 1/2). By summing the different terms, we obtain:
Z yjþ1=2

yj�1=2

F lag vxk
	 
� �

i�1=2
dy ¼

X
l;m

SF lag;� vx;�k½ �
� �

lm;i�1=2
:

The jump of the phase function is zero when the same fluid is present on both sides of the interface (lines 1

and 4 of Table 2). When the fluid under interest lies initially on the left and is entering the cell (line 2 of

Table 2), the jump of its associated phase function is �1. When the fluid under interest lies on the right

and the other fluid is entering the cell (line 3 of Table 2), the jump of its phase function is 1. The Lagrangian

fluxes, in each type of contact, involve only the corresponding interface velocity and pressure that are

provided by the Riemann solver.

For cell boundary i + 1/2, we also have:
Z yjþ1=2

yj�1=2

F lag vxk
	 
� �

iþ1=2
dy ¼

X
l;m

SF lag;� vx;�k½ �
� �

lm;iþ1=2
:

Assuming the Lagrangian fluxes are constant during the time step, we have:
I3 ¼ Dt
X
l;m

SF lag;� vx;�k½ �
� �

lm;i�1=2
þ
X
l;m

SF lag;� vx;�k½ �
� �

lm;iþ1=2

 !
:

The last integral I 03 is obtained similarly:
I 03 ¼
Z Dt

0

Z
Cij

Glag ovk
oy

dV dt ¼ DtDx ð
gdGlag vyk½ � Þj�1=2 þ ð

gdGlag vyk½ � Þjþ1=2

� �

and
I 03 ¼ Dt
X
l;m

SGlag;� vy;�k½ �
� �

lm;j�1=2
þ
X
l;m

SGlag;� vy;�k½ �
� �

lm;jþ1=2

 !
:

Finally, the numerical scheme (50) reads, for each fluid k:
ðakfUkgÞnþ1

ij � ðakfUkgÞnij
Dt

þ
ðgvkF Þiþ1=2 � ðgvkF Þi�1=2

Dx
þ
ðgdvkGÞjþ1=2 � ðgdvkGÞj�1=2

Dy

¼
ð g
F lag vxk½ �Þi�1=2 þ ð g

F lag vxk½ �Þiþ1=2

Dx
þ
ð
gdGlag vyk½ � Þj�1=2 þ ð

gdGlag vyk½ � Þjþ1=2

Dy
; ð51Þ



590 O. Le Métayer et al. / Journal of Computational Physics 205 (2005) 567–610
where all terms have been divided by DxDyDt and with
ðgvkF Þi�1=2 ¼
1

Dy

X
l;m

Sv�kF
�� �

lm;i�1=2
; ðgdvkGÞj�1=2 ¼

1

Dx

X
l;m

Sv�kG
�� �

lm;j�1=2
;

ð g
F lag vxk½ �Þi�1=2 ¼

1

Dy

X
l;m

SF lag;� vx;�k½ �
� �

lm;i�1=2
; ð

gdGlag vyk½ � Þj�1=2 ¼
1

Dx

X
l;m

SGlag;� vy;�k½ �
� �

lm;j�1=2
:

4.2. Implementation of the reactive Riemann solver into the DEM

In Fig. 4, we have represented an example of waves pattern in a (x,t) diagram representing the solution

of the reactive Riemann problem associated to an evaporation front. An additional wave appears compared

to the non-reactive case: the evaporation front. This one is a discontinuity separating the superheated liquid

and its pure vapor when the evaporation process is total, and a liquid–vapor mixture in thermodynamic
equilibrium when the evaporation is partial. The front appearance comes from the fact that the liquid be-

comes superheated (Pl < Psat(Tl)). Moreover, the presence or absence of the mixture behind the front is

determined in accordance to the location of the CJ deflagration point in the (P,v) diagram. If

qCJ < qg,sat(TCJ), the evaporation is total (CJ state outside the saturation dome). Otherwise, the evapora-

tion is partial (CJ state inside the saturation dome).

In addition, such a front obeys the Rankine–Hugoniot relations [F � rU] = 0 (r is the front velocity),

where F and U indicate, respectively, the flux and the conservative variables vector of pure fluid Euler equa-

tions in the total evaporation case or homogeneous Euler equations in the partial evaporation case.
Thus two fundamental ingredients are available:

� the evaporation front is the location where the phase functions have jumps,

� the front obeys the Rankine–Hugoniot relations [F � rU] = 0.

Indeed, the dynamic vapor appearance behind the front creates a jump of its phase function. Then a

jump of the liquid phase function is created which is opposite to the vapor one. The same situation occurs

when a liquid–vapor mixture appears behind the front taking into account that part of the liquid deter-
mined by the reactive Riemann solver does not change into vapor.

The terms F � rU associated to evaporation fronts, named reactive fluxes, have the same purpose as the

Lagrangian fluxes corresponding to the particular case r = u. These reactive fluxes are constant across

phase functions discontinuities.

It is also important to note that the dynamic vapor appearance behind the front will modify the jumps of

the phase functions across the contact discontinuity as represented in Fig. 14.

Indeed, in the inert case, the evaporation front is absent and only the fluids initially present are recovered

on both sides of the contact discontinuity. In the reactive case, vapor appears at the contact discontinuity.
Then the Lagrangian fluxes are modified as well as the jumps of the phase functions, as shown in Fig. 14.
Produced
vapor

u

Shock

u+c

t

x

Lagrangian
flux

LiquidVapor

Vapor
Liquid

σu

Shock u+c

t

x

Reactive
flux

LiquidVapor

Vapor Liquid

Lagrangian
flux

Produced
vapor

Fig. 14. Resolution of the inert (left) and the reactive (right) Riemann problem.
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When the evaporation is total, the jumps are zero at the contact discontinuity for the situation depicted on

this figure. When the evaporation is partial, the situation is more complicated and is detailed in Appendix

B. The same type of remarks holds at the front level. For the sake of clarity, we only consider in the fol-

lowing total evaporation fronts. The implementation of partial evaporation fronts is described in Appendix

B.
For a better understanding, we adopt some notations indicating if the resolution of a Riemann problem

is inert or reactive. The Riemann problem solution corresponds to the inert one when the liquid is not

superheated, i.e., if the �reactivity� test (P* < Psat(T*)) is not fulfilled. The different fluxes and the associated

phase functions will be given in accordance with these notations, described in Table 3.

In addition, in the particular Riemann problem (1–1), two evaporation fronts may appear. They will be

denoted by the subscripts l and r when they are facing, respectively, to the left and to the right.

We now consider the integrals of Eq. (50) that must be determined in the reactive case.

The temporal term I1 remains unchanged while the convective fluxes I2 and I 02 and the non-conservative
terms I3 and I 03 have to be modified.

4.2.1. Integration of the convective fluxes I2 and I 02
The dynamic vapor appearance changes the values of the phase function v�k . For example, the solution of

the reactive Riemann problem represented in Fig. 14 indicates that vapor is present at x/t = 0 while the

associated inert solution leads to the presence of liquid.

Assuming fluid 1 is a liquid and fluid 2 is its associated vapor, the values of v�1 in Table 1 must be mod-

ified when the Riemann problems are reactive. Then, the sampling at x/t = 0 is done with respect to u* (con-
tact discontinuity velocity) and r* (front velocity) as represented in Table 4.

When vapor is present initially on both sides of the contact (last line of Table 4), the phase function of

fluid 1 is necessary 0.

When fluid 1 is present on one side only, two instances have to be considered. This fluid may remain

liquid, the inert Riemann problem thus provides the same solution regarding v�1 and F* as in Table 1 (lines

5 and 7 of Table 4). When fluid 1 becomes superheated, vapor is produced behind the front.

Thus, when fluid 1 is initially on the left and the front is entering the cell, v�1 ¼ 1 (line 6 of Table 4). Such

instance occurs when the liquid velocity is positive and larger than the front velocity that faces to left. Sym-
metrically, when fluid 1 is initially on the right and the front is leaving the cell, v�1 ¼ 1 (line 8 of Table 4).

Such case occurs when the liquid velocity is negative and larger than the front velocity that faces to right.

The first line of Table 4 corresponds to the case with two inert liquids in contact already examined in Table

1. The three next cases are more complex.

We consider first the case where only the liquid on the left is superheated (line 2 of Table 4) correspond-

ing to a reactive front facing to left (R)l. In this case, the contact discontinuity separates vapor produced

behind the front on the left and inert liquid on the right. When the front velocity is negative and the velocity

of the contact discontinuity is positive, then only vapor is present along the x/t = 0 axis. Otherwise, fluid 1
crosses the cell boundary.

The third line of Table 4 summarizes the symmetric instance (evaporation front facing to right). The

fourth line of Table 4 summarizes the instance of two reactive fronts facing, respectively, to left and right

producing both pure vapor.
Table 3

Notations associated with the resolution of Riemann problems

Notations Significations

(R) Reactive Riemann problem

(I) Inert Riemann problem



Table 4

The different configurations for Eulerian fluxes at cell boundary i � 1/2 for fluid k = 1 in the presence of total evaporation fronts

Contact Surface Eulerian flux Type Phase function v�1

1–1 S11 F �
11 (I) v�1;11 ¼ 1

(R)l v�1;11 ¼
0 if r�11;l < 0 < u�11
1 otherwise

�
(R)r v�1;11 ¼

0 if u�11 < 0 < r�11;r
1 otherwise

�
(R)l v�1;11 ¼

0 if r�11;l < 0 < r�11;r
1 otherwise

�
(R)r

1–2 S12 F �
12 (I) v�1;12 ¼

1 if u�12 > 0

0 otherwise

�
(R) v�1;12 ¼

1 if r�12 > 0
0 otherwise

�

2–1 S21 F �
21 (I) v�1;21 ¼

1 if u�21 < 0

0 otherwise

�
(R) v�1;21 ¼

1 if r�21 < 0

0 otherwise

�

2–2 S22 F �
22 (I) v�1;22 ¼ 0
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Taking into account all instances summarized in Table 4, the formulas of the convective fluxes remain

unchanged:
I2 ¼ DtDy ðgvkF Þiþ1=2 � ðgvkF Þi�1=2

� �
¼ Dt

X
l;m

Sv�kF
�� �

lm;iþ1=2
�
X
l;m

Sv�kF
�� �

lm;i�1=2

 !
;

I 02 ¼ DtDx ðgdvkGÞjþ1=2 � ðgdvkGÞj�1=2

� �
¼ Dt

X
l;m

Sv�kG
�� �

lm;jþ1=2
�
X
l;m

Sv�kG
�� �

lm;j�1=2

 !
:

4.2.2. Integration of the non-conservative terms I3 and I 03
Contrary to convective fluxes, the integration of the terms

R yjþ1=2

yj�1=2
ðF � rUÞ½vxk� dy on each cell boundary

leads to additional terms named reactive fluxes.

For each reactive Riemann problem (see Fig. 15), this integral may be splitted in two types of terms. The
first one comes from the contact discontinuity (Lagrangian fluxes) and the second one is associated to the

presence of the reactive front (reactive fluxes):
Fig. 15. Lagrangian and reactive fluxes in the Riemann problem (2�1) for a total evaporation front.
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Z yjþ1=2

yj�1=2

F � rUð Þ vxk
	 


dy ¼
X
l;m

Slm F lag;�½vxk�
� þ F rea;�½vxk�

�� �
lm
:

Integrations are possible because the Lagrangian and the transfer fluxes are uniform across contact discon-

tinuities and reactive fronts, respectively:
F lag ¼ �u; 0; P ; 0; Pu½ �T; F rea ¼ �r; m; muþ P ; muv; mE þ Pu½ �T;

where m = q(u � r) is the mass flow rate across the reactive front.

The Lagrangian fluxes and the associated jumps of the phase function v1 across the contact discontinu-
ities are summarized in Table 5 for cell boundary i � 1/2.

We detail the first type of contact (1–1) that is the most complicated. The first line of Table 5 corresponds

to the absence of reactive fronts. Fluid 1 remaining present on both sides of the contact discontinuity, the

jump of its phase function is necessarily zero. Similarly, when two fronts are present (line 4 of Table 5) there

is no jump of the phase function since vapor is present on both sides of the contact discontinuity.

We now consider presence of superheated liquid only on the left (line 2 of Table 5). When the velocity of

the contact discontinuity, separating the produced vapor on the left and the inert liquid on the right, is neg-

ative, no jump of the phase function is present inside the cell. Otherwise, this jump is necessarily 1.

Symmetrically, when the superheated liquid lies on the right only (line 3 of Table 5) and the velocity of
the contact discontinuity is positive, the jump is �1 since the produced vapor is on the right and the inert

liquid is on the left. The other instances of Table 5 follow the same logic.

When reactive Riemann problems are considered, we can notice that the jump of the phase functions are

zero in most cases, contrarily to the inert case (see Table 2). Thus most interactions between fluids (liquid
5

fferent configurations for Lagrangian fluxes at cell boundary i � 1/2 for fluid k = 1 in the presence of total evaporation fronts

t Surface Lagrangian flux Type Jump vx1
	 
�

S11 F lag;�
11 (I) ½vx1�

�
11 ¼ 0

(R)l ½vx1�
�
11 ¼

1 if u�11 > 0

0 otherwise

�
(R)r ½vx1�

�
11 ¼

�1 ifj u�11 > 0
0 otherwise

�
(R)l

½vx1�
�
11 ¼ 0

(R)r

S12 F lag;�
12 (I) ½vx1�

�
12 ¼

�1 if u�12 > 0
0 otherwise

�
(R) ½vx1�

�
12 ¼ 0

S21 F lag;�
21 (I) ½vx1�

�
21 ¼

1 if u�21 > 0
0 otherwise

�
(R) ½vx1�

�
21 ¼ 0

S22 F lag;�
22 (I) ½vx1�

�
22 ¼ 0



Table 6

The different configurations for reactive fluxes at cell boundary i � 1/2 for fluid k = 1 in the presence of total evaporation fronts

Contact Surface Type Reactive flux Jump vx1
	 
�

1–1 S11 (R)l F rea;�
11;l ½vx1�

�
11;l ¼

�1 if r�11;l > 0
0 otherwise

�
(R)r F rea;�

11;r ½vx1�
�
11;r ¼

1 if r�11;r > 0

0 otherwise

�

1–2 S12 (R) F rea;�
12 ½vx1�

�
12 ¼

�1 if r�12 > 0

0 otherwise

�

2–1 S21 (R) F rea;�
21 ½vx1�

�
21 ¼

1 if r�21 > 0

0 otherwise

�
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and vapor) are carried out from contact discontinuities to reactive fronts. The different configurations con-

cerning these additional reactive fluxes are summarized in Table 6.

We detail the situations that appear when fluid 1 is initially on both sides of the contact. When a reactive

front is present and faces to left (line 1 of Table 6), the jump of the phase function is �1 when the front
velocity is positive. Otherwise, the jump is zero. Symmetrically, when a front faces to right (line 2 of Table

6), the jump is 1 when the front velocity is positive. The same conclusions provide the data of lines 3 and 4

of Table 6.

The large number of configurations mentioned previously in the different tables shows the complexity of

the coupling between the reactive Riemann problem and the discrete equations method. According to the

solutions provided by the resolution of the Riemann problem, additional terms appear and modify the

terms present initially in the numerical scheme (51).

Then, the numerical scheme of the reactive discrete equations method (RDEM) reads for each fluid k:
ðakfUkgÞnþ1

ij � ðakfUkgÞnij
Dt

þ
ðgvkF Þiþ1=2 � ðgvkF Þi�1=2

Dx
þ
ðgdvkGÞjþ1=2 � ðgdvkGÞj�1=2

Dy

¼
ð
g

F lag vx
k½ �Þi�1=2þð

g
F lag vx

k½ �Þiþ1=2

Dx þ ð
g

F rea vx
k½ �Þi�1=2þð

g
F rea vx

k½ �Þiþ1=2

Dx

þ ð
gd

Glag vyk½ � Þj�1=2þð
gd

Glag vyk½ � Þjþ1=2

Dy þ ð
gd

Grea vyk½ � Þj�1=2þð
gd

Grea vyk½ � Þjþ1=2

Dy ;

0BBB@
1CCCA

ð52Þ
where
ðgvkF Þi�1=2 ¼
1

Dy

X
l;m

Sv�kF
�� �

lm;i�1=2
; ðgdvkGÞj�1=2 ¼

1

Dx

X
l;m

Sv�kG
�� �

lm;j�1=2
;

ð g
F lag vxk½ �Þi�1=2 ¼

1

Dy

X
l;m

SF lag;� vx;�k½ �
� �

lm;i�1=2
ð gF rea vxk½ �Þi�1=2 ¼

1

Dy

X
l;m

SF rea;� vx;�k½ �ð Þlm;i�1=2;

ð
gdGlag vyk½ � Þj�1=2 ¼

1

Dx

X
l;m

SGlag;� vy;�k½ �
� �

lm;j�1=2
; ð gdGrea vyk½ � Þj�1=2 ¼

1

Dx

X
l;m

SGrea;� vy;�k½ �ð Þlm;j�1=2:
In the next section, we present numerical results obtained with this scheme and validations over
experiments.
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5. Numerical results

In this section, we provide one-dimensional validations of the reactive discrete equations method

(RDEM) built in the previous section and two-dimensional illustrations.

5.1. One-dimensional validations

Two situations involving reactive fronts are examined. The first one concerns evaporation fronts. The

results obtained with the reactive discrete equations method (RDEM) are compared to those obtained with

the exact reactive Riemann solver. The second situation, involving detonation fronts, is also examined in

order to illustrate the method capabilities. All these tests are realized with a mesh involving 1000 compu-

tational cells.

5.1.1. Evaporation front

In this simulation, the two phases correspond to liquid dodecane and its associated vapor whose EOS

parameters are given in Section 2. The initial configuration, close to the experimental conditions given in

[33], corresponds to the one described in Section 3 where an exact solution is provided in Fig. 11.

The numerical solution (symbols) and the exact solution (lines) are represented at time t = 370 ls in Fig.

16. The mixture density and the pressure are represented in logarithmic scales.

In this figure, we can observe an excellent agreement between the solutions. The jump relations across

the reactive front are correctly computed by the non-conservative terms of the method. We can also notice
that the method correctly handles the interface conditions across the contact discontinuity separating the
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Fig. 16. Numerical (symbols) and exact (lines) solutions of the liquid–vapor expansion tube.
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shocked and the produced vapor. The same remark holds for the isentrope connecting the initial state of the

liquid with a metastable state, involving a pressure drop. As the density and consequently the sound speed

remain nearly constant, the isentrope looks like a discontinuity, as represented in the pressure graph. Fi-

nally, we can note that the numerical diffusion associated to the front is negligible because the front speed

is relatively low (0.6 m/s).

5.1.2. Propagation of a detonation front

To perform such computations, the RDEM described in the previous section does not need any modi-

fication. However, the Riemann solver necessitates the introduction of detonation fronts instead of defla-

gration waves. Such modifications are detailed in Appendix A.

We consider a condensed explosive and its gaseous products whose parameters are given in [13]. The

explosive parameters are c = 3, P1 = 0 Pa and q = 4.5156 · 106 J/kg. Those of the products are c = 3,

P1 = 0 Pa and q = 0 J/kg.
Piston boundary conditions are used at the left side of a 1-m length domain filled with the explosive to

simulate the impact of a projectile at the velocity of 1000 m/s.

In Fig. 17, numerical solutions are represented at times t = 30 ls, t = 60 ls, t = 90 ls and t = 120 ls,
showing the propagation of the detonation front into the explosive. The horizontal lines represent the the-

oretical values of the CJ detonation state. On the numerical results curves, the slope change in the various

profiles is characteristic of the CJ detonation point. It is clear that the CJ state is correctly computed as we

can see in this figure.
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Fig. 17. Propagation of a detonation front into a condensed explosive. The horizontal lines represent the theoretical values of the CJ

detonation point.
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The present method contains two important features:

� the chemical decomposition rates of the condensed explosive, that are very difficult to determine from

experiments, are not necessary,

� solving the reaction zone is useless.

The detonation dynamics is directly introduced in the reactive Riemann problem, built in Appendix A, by

the way of the Rankine–Hugoniot relations and the CJ detonation relation. This last relation may also be

replaced by more sophisticated kinetic relations such as those proposed by [6,7,40].

We shall see later that this method is able to propagate multi-dimensional detonation fronts.

5.2. Two-dimensional tests

The aim of this subsection is to illustrate the method capabilities concerning the multi-dimensional prop-

agation of permeable fronts. As a limit situation, we first examine the case of a non-permeable interface by

studying the interaction of a shock wave with a light gas bubble. We then examine subsonic front propa-

gation in two evaporation test problems. The first consists in supercavitation over a high velocity underwa-

ter projectile. Computed results are compared with experiments. The second test consists in the

computation of cavitation effects and dynamic appearance of interfaces in diesel injection nozzles. We then

address supersonic fronts by considering the 2D dynamics of a detonation wave propagating into a

condensed explosive and interacting with material interfaces.

5.2.1. Non-permeable fronts: shock–interface interaction

The initial configuration of this simulation is described in Fig. 18. It consists in the study of the inter-

action of an incident shock wave propagating into a heavy gas with a light gas bubble.

A high pressure chamber (P = 5.6 · 105 Pa) filled with air at density q = 3.92 kg/m3 is connected to a

chamber filled with air at atmospheric pressure and normal density. In this chamber, a light gas bubble (he-

lium) at density q = 0.16 kg/m3 is present. The two fluids obey the ideal gas EOS with different polytropic

coefficients.
The numerical results (900 · 360 computational cells) are shown in the right column of Fig. 19 as a

Schlieren diagram of the mixture density. The results are represented at times t = 202 ls, t = 396 ls,
t = 596 ls and t = 797 ls from up to down.

In addition, shock tube experiments with the initial configuration described in Fig. 18 have been done at

POLYTECH Marseille, by the research group leaded by Pr.Houas. The associated experimental results

(shadowgraphs) are represented at the left column of Fig. 19. The time interval between two successive

_photographs is Dt = 210 ls.
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Fig. 18. Initial configuration of a shock tube with a light gas bubble.



Fig. 19. Experimental (left) and numerical (right) results of a shock-bubble interaction. The experimental results (shadowgraphs) have

been obtained by courtesy of Dr. Layes. The numerical results correspond to density gradient contours (dark areas show high density

gradient levels).
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We can first notice that experimental and numerical results are qualitatively similar. At atmospheric

pressure, the sound speed in the light fluid (c = 1020 m/s) is much larger than the one in the air (c = 346

m/s). Thus the shock speed is higher inside the bubble than outside as we can observe in the first photo-
graphs (left and right). The shock is accelerated but recovers its original shape since the second pictures.

The shock interaction with the interface produces a Richtmyer–Meshkov instability resulting in a high

velocity heavy fluid jet that contracts the bubble and induces its rotation as we can see in the last views.

It appears clearly that the method is able to solve contact/interface problems.
5.2.2. Subsonic evaporation fronts: supercavitation over obstacle

A solid high velocity projectile (u = 650 m/s) is launched from a gun into a tank filled with water. A flash

X-ray radiograph allows the visualization of the cavitation pocket around the projectile. Such experimental
facility has been built at ISL (French-German Institute of Saint-Louis). The measurements have been led by

[31] and are shown in the top of Fig. 20.

We realize the numerical simulation of this experiment under the same conditions with the present meth-

od where the evaporation front is solved as a CJ deflagration wave. The projectile is treated as an obstacle

at rest with an incoming liquid at the velocity u = 650 m/s. The water is initially at atmospheric pressure

with density q = 1000 kg/m3. The liquid and vapor thermodynamics is represented by a �Stiffened Gas�
EOS whose parameters are given in Section 2. The numerical result (mixture density contours) is shown

in the bottom of Fig. 20. We can notice that the numerical and experimental results are qualitatively
identical.



Fig. 20. Experimental (top) and numerical (bottom) results. The experimental result (radiograph) has been obtained by courtesy of Dr.

Schaffar. The numerical result correspond to mixture density contours (pale areas show low density levels).
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5.2.3. Subsonic evaporation fronts: cavitation in liquid fuel injectors

We consider a nozzle connected to a high pressure tank (P = 108 Pa) filled with liquid dodecane at den-
sity q = 600 kg/m3. The nozzle outlet is connected to an engine combustion chamber where the pressure is

of the order of 105 Pa. The large pressure ratio combined to the converging geometry of the nozzle produces

a high velocity (.200 m/s) liquid jet into the combustion chamber. The efficiency of the injection as well as

atomization inside the combustion chamber strongly depends on cavitation effects occurring inside the noz-

zle [3,4]. The aim of this paragraph is to show that the present method is able to compute vapor creation

and cavitation pockets in such device.

The initial configuration of the simulation (600 · 600 computational cells) is shown in Fig. 21. The

thermodynamics parameters of liquid and vapor dodecane are the same as those used previously in the first
one-dimensional test. A third fluid (air) at density q = 1 kg/m3 is present initially inside the injection duct.

Its associated EOS parameters are c = 1.4 and P1 = 0 Pa.

The vapor volume fraction contours are shown in Fig. 22 at times t = 2.5 ls, t = 73 ls, t = 143 ls, t = 230

ls, t = 323 ls and t = 422 ls. The temporal evolution is done from up to down and left to right.

At the first instants, the high-pressure liquid is travelled by expansion waves because it is in contact with

the low-pressure air. Effects similar to the one-dimensional expansion tube test represented in Fig. 16 are

present. At the free surface an evaporation front appears and produces vapor dodecane. The vapor flows

through the nozzle as well as the liquid. Cavitation pockets are created at the corner and the tip of the nee-
dle as shown in pictures 2 and 3. At the same time, a cavitation pocket appears at the nozzle throat. In the
Fig. 21. Initial configuration of a high pressure fuel injector.



Fig. 22. Temporal evolution of the vapor volume fraction in a high pressure fuel injector (dark areas show high volume fraction levels).
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Fig. 23. Initial configuration of an impact over a tank filled with explosive.
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Fig. 24. Temporal evolution of the mixture density : two-dimensional propagation of a detonation front (pale areas show high density

levels).

O. Le Métayer et al. / Journal of Computational Physics 205 (2005) 567–610 601
further pictures, the pocket settled at the corner of the needle tends to disappear. The expansion effects have

considerably decreased as the liquid has filled the whole system. Nevertheless, a steady cavitation pocket
remains attached to the nozzle throat as we can see in the last views.
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5.2.4. Detonation fronts

The aim of this test is to show the capability of the method to propagate others multi-dimensional

permeable fronts such as detonation waves (supersonic fronts). The reactive Riemann solver associated

to detonation fronts built in Appendix A is used with the same preceding method (RDEM).

The initial situation of the simulation is represented in Fig. 23.
This situation corresponds to the impact of a copper projectile over a copper tank containing an ideal

condensed explosive whose EOS parameters are given previously in the one-dimensional detonation test

case. Thus, material interfaces are present as well as a permeable front (detonation wave). In this simula-

tion, four fluids are needed: explosive, gaseous products, copper and surrounding gas. Mass transfer is only

considered between the explosive and its associated products. The �Stiffened Gas� EOS parameters of the

copper with density q = 8900 kg/m3 are c = 4.22 and P1 = 324 · 108 Pa. Those of the gas, with density

q = 1 kg/m3, are c = 1.4 and P1 = 0 Pa. The medium is initially at atmospheric pressure and at rest except

the projectile whose velocity is 2000 m/s.
The numerical results (400 · 400 computational cells) are given in Fig. 24 and show the temporal evo-

lution of the detonation front propagating into the explosive. The results are represented at times t = 10

ls, t = 36 ls, t = 51 ls, t = 69 ls, t = 88 ls and t = 100 ls.
At the first instants, we clearly see that the front is not planar. Indeed, the pressure levels are higher at

the corners of the tank. This leads locally to a super-detonation. The situation inverts at further instants.

Expansion effects appear near the envelope resulting in a change of the front curvature. This phenomenon is

experimentally observed.
6. Conclusion

A new approach for the numerical resolution of permeable fronts dynamics has been developed. It has

been illustrated on several two-dimensional examples involving interfaces, supersonic or subsonic perme-

able fronts. The studied applications are related to evaporation and detonation waves, but we believe that

the same approach can be used to propagate flame fronts, ablation fronts such as those encountered in iner-

tial confinement fusion (ICF) [24], and others.
For each specific situation care has to be taken with the kinetic relation that allows the closure of the

reactive Riemann problem. Regarding general evaporation and ablation fronts, this topic is one of the per-

spectives of the present work.

In the present work, the fluid thermodynamics has been restricted to the �StiffenedGas�EOS because it was

sufficiently accurate for the applications. When dealing with other detonation applications, more sophisti-

cated EOS may be necessary [8]. The building of the reactive Riemann solver in such context is also possible.
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Appendix A. The reactive Riemann problem with detonation waves

In this appendix, we describe the building of the reactive Riemann problem solution in the presence of

detonation waves. As for evaporation fronts, this reactive Riemann problem contains a transformation
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wave controlling the rate at which equilibrium is reached. This additional wave results in the production of

detonation products at thermodynamic equilibrium. Such reactive Riemann problem is also well described

in [9,11,18]. Its resolution has been done in [9] for ideal gases. We extend the method for the �Stiffened Gas�
EOS hereafter.

Like evaporation fronts, the detonation wave obeys the Rankine–Hugoniot relations with different �Stiff-
ened Gas� EOS parameters on both sides of the front:
u ¼ u0 � sgðP � P 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðP�P 0ÞðP�PvÞ
q0 ðcþ1ÞðPþP1Þþðc�1ÞðP0þP1Þð Þ

q
;

m2 ¼ q0
2
ðcþ 1ÞðP þ P1Þ þ ðc� 1ÞðP 0 þ P1Þ½ � P�P 0

P�Pv
;

q ¼ q0

cþ1
c�1

ðPþP1ÞþP0þP1
c0þ1

c0�1
ðP0þP10ÞþPþP10�2q0Dq

8>>>><>>>>: ðA:1Þ
with ± for a right(left)-facing front, respectively. The pressure Pv, given by relation (23), corresponds to a

constant volume explosion (q = q0). The state with subscript 0 is the initial state of the explosive in which

the detonation front propagates.

Let us examine the various waves patterns to take into account for the reactive Riemann problem.

A detonation front is always compressive (P > P0) and supersonic with respect to the initial state of the

explosive (|D � u0| > c0, where D is the front velocity). Consequently, no wave is preceding the front.

The CJ detonation condition |D � u| = c expresses the front stability because the backward waves cannot
reach the front. The Rankine–Hugoniot system is thus closed by the CJ relation and it is useless to give any

additional value behind the front.

The front velocity can be higher than the CJ one with superdetonations (upper part of the CJ detonation

point in Fig. 8). It happens when the pressure behind the front is higher than the CJ one. Then, it is nec-

essary to use the value of the pressure to close the Rankine–Hugoniot system. Indeed, in such situations,

backward waves reach the front that is subsonic with respect to the detonation products (|D � u| < c). Nev-

ertheless, this situation occurs only in unsteady conditions when a piston sustains the strong detonation. As

the front velocity is higher than the piston one the detonation wave cannot be supported by the piston over
a long time period. It recovers quickly its stable state and propagates at CJ velocity.

The curve below theCJ detonation point in Fig. 8 corresponds toweak detonations. In this case, the front is

supersonic with respect to the detonation products (|D � u| > c). Consequently, the state behind the front can-

not influence the wave that remains sustained by the CJ detonation condition. Rarefaction waves (Taylor

expansionwave) appear immediately behind the front connecting theCJ state to the products state. Thiswaves

pattern, named CJ detonation, is observed in most cases when the products pressure is lower than the CJ one.

As for evaporation fronts, two waves patterns exist with detonations :

� a superdetonation front when the products pressure is higher than the CJ one (single wave),

� a CJ detonation front followed by a Taylor expansion wave when products pressure is lower than the CJ

one (composite wave).

Like evaporation phenomena, the resolution of the reactive Riemann problem depends on a �reactivity
factor� of the explosive, here an ignition pressure Pig.

First, the inert Riemann problem is solved. On both sides of the contact discontinuity u*, we compare, if

the fluid corresponds to an explosive, the solution P* with its characteristic ignition pressure Pig.
If P* < Pig, the explosive remains inert and the whole solution is obtained with the inert Riemann solver.

If P* > Pig, the explosive reacts and the reactive Riemann problem has to be solved.

Similarly to the evaporation problem, this one is solved by iterating over the pressure P* at the contact

discontinuity. At each iteration, the pressure P* determines the waves pattern (Fig. 25) connecting the left

and right states to this pressure.
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Let us recall that, in the inert case, two instances are possible:

� if P* P P0, Rankine–Hugoniot relations (13) are used,

� if P* 6 P0, isentropic relations (11) are used.

When the fluid is reactive, two other instances are possible:

� if P* P PCJ, the front is a superdetonation and relations (A.1) are used,

� if P* 6 PCJ, the front is a CJ detonation and isentropic relations (11) are used to connect the pressure P*

to the CJ state determined by relation (36).

All these relations write in a common form:
u� ¼ u0 � /0ðP �Þ; ðA:2Þ

with
/0ðP �Þ ¼

P ��P0

q0c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0þ1

2c0

P�þP10
P0þP10

� �
þc0�1

2c0

r if P � > P 0 ðinertÞ;

2c0
c0�1

P�þP10

P0þP10

� �ðc0�1Þ=2c0
� 1

� �
if P �

6 P 0 ðinertÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðP��P0ÞðP ��PvÞ

q0 ðcþ1ÞðP �þP1Þþðc�1ÞðP0þP1Þð Þ

q
if P � > PCJ ðreactiveÞ;

uCJ � u0 þ 2cCJ
c�1

P �þP1
PCJþP1

� �ðc�1Þ=2c
� 1

� �
if P �

6 PCJ ðreactiveÞ:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ðA:3Þ
Now substituting subscript 0 in (A.2) and (A.3) by subscripts L and R corresponding to the left and right

states, respectively, we get:
u� ¼ uL � /LðP �Þ; ðA:4Þ

u� ¼ uR þ /RðP �Þ: ðA:5Þ
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Fig. 25. Waves patterns in the reactive Riemann problem associated to detonation fronts.
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Fig. 27. Lagrangian and reactive fluxes in the Riemann problem (2�1) for a partial evaporation front.

Table 7

Notations associated with the resolution of Riemann problems

Notations Significations

(TR) Reactive Riemann problem with a total evaporation front

(PR) Reactive Riemann problem with a partial evaporation front

(I) Inert Riemann problem
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Combining Eqs. (A.4) and (A.5) a scalar equation is obtained:
Table

The di

fronts

Conta

1–1

1–2

2–1

2–2
F ðP �Þ ¼ uR � uL þ /RðP �Þ þ /LðP �Þ ¼ 0: ðA:6Þ

The solution P* is determined by an iterative algorithm (Newton–Raphson for example). Once P* is ob-
tained, it is easy to determine the whole solution from the corresponding waves patterns relations.
8

fferent configurations for Eulerian fluxes at cell boundary i � 1/2 for fluid k = 1 in the presence of partial or total evaporation

ct Type Eulerian flux Phase function v�1

(I) F �
11 v�1;11 ¼ 1

(TR)l F �
11 v�1;11 ¼

0 if r�11;l < 0 < u�11
1 otherwise

�
(TR)r F �

11 v�1;11 ¼
0 if u�11 < 0 < r�11;r
1 otherwise

�
(TR)l F �

11 v�1;11 ¼
0 if r�11;l < 0 < r�11;r
1 otherwise

�
(TR)r

(PR)l ða�1F �
1Þ11;l if r�11;l < 0 < u�11

F �
11 otherwise

�
v�1;11 ¼

0 if u�11 < 0 < r�11;r
1 otherwise

�
(TR)r

(TR)l ða�1F �
1Þ11;r if u�11 < 0 < r�11;r

F �
11 otherwise

�
v�1;11 ¼

0 if r�11;l < 0 < u�11
1 otherwise

�
(PR)r

(PR)l
ða�1F �

1Þ11;l if r�11;l < 0 < u�11
F �
11 otherwise

�
v�1;11 ¼ 1

(PR)r
ða�1F �

1Þ11;r if u�11 < 0 < r�11;r
F �
11 otherwise

�
v�1;11 ¼ 1

(PR)l ða�1F �
1Þ11;r if u�11 < 0 < r�11;r

ða�1F �
1Þ11;l if r�11;l < 0 < u�11

F �
11 otherwise

8<: v�1;11 ¼ 1

(PR)r

(I) F �
12 v�1;12 ¼

1 if u�12 > 0
0 otherwise

�
(TR) F �

12 v�1;12 ¼
1 if r�12 > 0

0 otherwise

�
(PR)

ða�1F �
1Þ12 if r�12 < 0 < u�12

F �
12 otherwise

�
v�1;12 ¼

1 if u�12 > 0

0 otherwise

�
(I) F �

21 v�1;21 ¼
1 if u�21 < 0

0 otherwise

�

(TR) F �
21 v�1;21 ¼

1 if r�21 < 0

0 otherwise

�
(PR)

ða�1F �
1Þ21 if u�21 < 0 < r�21

F �
21 otherwise

�
v�1;21 ¼

1 if u�21 < 0

0 otherwise

�

(I) F �
22 v�1;22 ¼ 0



Table 9

The different configurations for Lagrangian fluxes at cell boundary i � 1/2 for fluid k = 1 in the presence of partial or total evaporation

fronts

Contact Type Lagrangian flux Jump ½vx1�
�

1–1 (I) F lag;�
11 ½vx1�

�
11 ¼ 0

(TR)l F lag;�
11 ½vx1�

�
11 ¼

1 if u�11 > 0

0 otherwise

�
(TR)r F lag;�

11 ½vx1�
�
11 ¼

�1 if u�11 > 0

0 otherwise

�
(TR)l F lag;�

11 ½vx1�
�
11 ¼ 0

(TR)r

(PR)l
ða�1;lF lag;�Þ11 ½vx1�

�
11 ¼

�1 if u�11 > 0

0 otherwise

�
(TR)r

(TR)l
ða�1;rF lag;�Þ11 ½vx1�

�
11 ¼

1 if u�11 > 0

0 otherwise

�
(PR)r

(PR)l ð1� a�1;lÞF lag;�
� �

11
½vx1�

�
11 ¼

1 if u�11 > 0

0 otherwise

�
(PR)r ð1� a�1;rÞF lag;�

� �
11

½vx1�
�
11 ¼

�1 if u�11 > 0
0 otherwise

�
(PR)l

ja�1;r � a�1;ljF lag;�
� �

11
½vx1�

�
11 ¼

sgn a�1;r � a�1;l

� �
11

if u�11 > 0

0 otherwise

(
(PR)r

1–2 (I) F lag;�
12 ½vx1�

�
12 ¼

�1 if u�12 > 0
0 otherwise

�
(TR) F lag;�

12 ½vx1�
�
12 ¼ 0

(PR) ða�1F lag;�Þ12 ½vx1�
�
12 ¼

�1 if u�12 > 0

0 otherwise

�
2–1 (I) F lag;�

21 ½vx1�
�
21 ¼

1 if u�21 > 0

0 otherwise

�
(TR) F lag;�

21 ½vx1�
�
21 ¼ 0

(PR) ða�1F lag;�Þ21 ½vx1�
�
21 ¼

1 if u�21 > 0

0 otherwise

�

2–2 (I) F lag;�
22 ½vx1�

�
22 ¼ 0
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An example of solution is provided hereafter.

A fluid at velocity u = 1000 m/s, with density q = 2000 kg/m3 impacts an explosive at rest whose density

is q = 1600 kg/m3. The EOS parameters of the impactor are c = 4 and P1 = 3109 Pa. The parameters of the

explosive are c = 3, P1 = 0 Pa and q = 4.56 · 106 J/kg. Those of the detonation product are the same but

with q = 0 J/kg. The initial impact is located at x = 0.3 m in a 1 m length tube at atmospheric pressure. The

exact solution is represented at time t = 70 ls in Fig. 26.



Table 10

The different configurations for reactive fluxes at cell boundary i�1/2 for fluid k = 1 in the presence of partial or total evaporation

fronts

Contact Type Reactive flux Jump ½vx1�
�

1–1 (TR)l F rea;�
11;l ½vx1�

�
11 ¼

�1 if r�11;l > 0

0 otherwise

�
(TR)r F rea;�

11;r ½vx1�
�
11 ¼

1 if r�11;r > 0

0 otherwise

�
(PR)l ð1� a�1ÞF rea;�� �

11;l
½vx1�

�
11 ¼

�1 if r�11;l > 0

0 otherwise

�
(PR)r ð1� a�1ÞF rea;�� �

11;r
½vx1�

�
11 ¼

1 if r�11;r > 0
0 otherwise

�

1–2 (TR) F rea;�
12 ½vx1�

�
12 ¼

�1 if r�12 > 0

0 otherwise

�
(PR) ð1� a�1ÞF rea;�� �

12
½vx1�

�
12 ¼

�1 if r�12 > 0
0 otherwise

�

2–1 (TR) F rea;�
21 ½vx1�

�
21 ¼

1 if r�21 > 0

0 otherwise

�
(PR) ð1� a�1ÞF rea;�� �

21
½vx1�

�
21 ¼

1 if r�21 > 0

0 otherwise

�
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The solution consists in a right-facing CJ detonation front propagating into the explosive followed by a

Taylor expansion wave and a left-facing shock wave propagating into the impactor. The different values of

the CJ detonation state with respect to the explosive initial state are qCJ = 2133 kg/m3, uCJ = 2135 m/s and

PCJ = 291.8 · 108 Pa, as shown by the horizontal lines in Fig. 26.
Appendix B. Implementation of partial evaporation fronts in the reactive discrete equations method (RDEM)

As we have seen in Section 4, the coupling of the reactive Riemann problem with the discrete equations

method leads to additional terms associated to evaporation fronts : the reactive fluxes. In Section 4, we have

considered total evaporation fronts where only vapor is produced behind the front. In this appendix we

extend the method to partial evaporation fronts where a mixture of liquid and vapor at thermodynamic

equilibrium is present behind the front, as shown in Fig. 27.

In this case, we must take into account the fact that a part of the liquid does not transform into vapor

across the evaporation front. Consequently, jumps of the phase functions are zero inside this volume frac-

tion. Moreover, at the contact discontinuity, two types of contacts between fluids are also available (vapor–
liquid and vapor–vapor).

For the sake of clarity, we adopt some notations indicating the presence of total or partial evaporation

fronts in the reactive Riemann problem solution as represented in Table 7.

When the evaporation is partial across the front, both phases (liquid and vapor) may coexist at x/t = 0.

The Eulerian fluxes F �
k ¼ ðqku; qku

2 þ P ; qkuv; ðqkEk þ P ÞuÞT;� of the two phases are available within the

mixture at thermodynamic equilibrium. Their respective volume fraction a�k within this mixture are also

given by the resolution of the reactive Riemann problem, more precisely by the relation (30). Thus, if

the sampling corresponds to the mixture zone, the retained Eulerian flux is a�kF
�
k for each phase k. Then,
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the different configurations for the Eulerian fluxes calculations in Table 4 are replaced by those of Table 8,

where we have removed deliberately the contact surfaces that remain unchanged.

Regarding Lagrangian and reactive fluxes, the phase functions have jumps not only at contact discon-

tinuities but also across evaporation fronts, as represented in Fig. 27. These jumps depend directly on the

volumes occupied by the two phases within the mixture behind the partial evaporation fronts.
Note also that when partial evaporation occurs (type (PR)), the resulting Lagrangian flux is the product

aFlag,* where a is the volume fraction through which the jump is non zero. Obviously a depends on the vol-

ume fraction a�k of each phase given by the reactive Riemann solver. For example, in the particular Rie-

mann problem (1�1) where two partial evaporation fronts ðr�
11;l and r�

11;rÞ may coexist, the Lagrangian

fluxes and jumps are calculated according to the volumes occupied by the phases on both sides of the con-

tact discontinuity u�11. The different configurations for the calculations of the Lagrangian fluxes are summa-

rized in Table 9.

The same considerations are used for the reactive fluxes calculations that are summarized in Table 10.
The discrete equations of the system (52) remains unchanged but the different terms have to be calculated

with the ingredients provided in these tables.
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